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1. Introduction

The observed acceleration of cosmic expansion is most simply explained by positing a small

positive cosmological constant (c.c.) in the low energy effective Lagrangian for the metric

of four dimensional space. The existence of a positive cosmological constant raises a host of

problems for theoretical high energy physics. One would like to understand the magnitude

of this parameter, and the nature of quantum observables in the asymptotically de Sitter

(dS) space-time that results.

With regard to the first question, Weinberg’s galactothropic bound on the cosmological

constant [1] seems to provide a satisfactory answer to the question both of the absolute

magnitude and the ratio of the c.c. to the current matter density. This assumes that one

has a theory in which the dark matter density ρ0 and the strength of primordial fluctuations

Q are fixed as one varies the c.c. or that Q and ρ0 vary with Λ in such a way as to take on

their real world values at the real world value of Λ. Theories in which all three parameters

are independent random variables are somewhat less attractive, but can still account for a

reduction of the “expected” value of the c.c. by many orders of magnitude [2].

There are two classes of meta-physical theories which are based on plausible dynamics,

and could give rise to a plethora of universes with different values of the c.c. We call

them meta-physical because, at least with current understanding, there is no way to make

observations on the alternative universes. The more famous of the two is called the String

Landscape [3], though much of it is based on ideas that are more than 20 years old and
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had no connection with string theory. Holographic cosmology [4] presents a picture of a

metaverse consisting of many asymptotically dS space-times embedded in a dense black hole

fluid. In the Landscape, all parameters of low energy physics vary as we jump from universe

to universe, while in holographic cosmology it is plausible that only the c.c. and things

which depend on it in the limit when it is small, vary. There is as yet no mathematical

formulation of what the Landscape is, though there have been some interesting attempts

to construct one [5]. The holographic cosmology of a defect free dense black hole fluid has

been mathematically formulated [4], but not the theory of the asymptotically dS defects

in the fluid.

Metaphysical theories are useful, if at all, only for understanding values of low energy

parameters,1 which cannot be explained by ordinary dynamical mechanisms. To a large ex-

tent, once the parameters are chosen the metaphysical theory is of little practical relevance.

This is particularly true in the holographic cosmology approach, where the structure of the

theory dictates that dynamics inside each asymptotically dS bubble is independent of the

outside.

From this point of view at least, the task of theoretical physics is to construct a

quantum theory of a single asymptotically dS universe. It may be that such a theory will

also be useful as an approximation to a future mathematical theory of the Landscape. At

any rate, this is the task we will take up in the present paper. In fact, we will take up a

somewhat more modest task. In the mid 80s, the focus of string theorists was on finding

a Poincaré invariant description of the real world. This was not because string theorists

were ignorant of the existence of cosmology, but because they imagined that the laws of

particle scattering were, to a good approximation independent of both the asymptotic

past and future. This project failed because no one has ever found a consistent model of

quantum gravity which is Poincaré invariant in d flat spacetime dimensions without being

super-Poincaré invariant. Nor have we found asymptotically AdS theories with radius large

compared to the string scale in which SUSY is broken in most of the volume of AdS.

Our own take on this failure is that it indicates a close connection between the SUSY

breaking we observe in the real world, and the fact that we have a positive c.c. [6] . The

analog of the old string theory program is to construct a theory in eternal dS space, which

will contain an approximation to particle physics where SUSY breaking is evident, but the

time dependence of cosmology is neglected. If you are with us so far, we can proceed to

the construction of the theory.

2. General rules of holographic space-time

In the course of constructing a holographic cosmology, the authors of [4] also invented a

general formalism for the holographic description of space-time. It is motivated by simple

kinematic considerations about the nature of observers in quantum mechanics, the causal

structure of Lorentzian space-times, and the covariant entropy bound [7].

1Here we conform to the conventional and incorrect language which identifies the c.c. as a low energy

parameter. In all examples we understand, it is in fact related to the physics of the highest energy states

in the theory, which are large black holes.
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In quantum mechanics, an observer is a large quantum system with many semiclassical

observables. The only way we know how to construct mathematical models of such systems

is to use the rules of (possibly cut off) quantum field theory. Indeed, a field theory in

finite volume is such an observer. Averages of local fields over significant fractions of the

volume have very small quantum fluctuations. The tunneling amplitudes between states

with different values of these macroscopic pointer variables go like e−cV Md

where M is

the cutoff momentum scale and d the dimension of the world volume of the field theory.

The precise observations of the mathematical formalism of quantum mechanics, in which

we imagine that observables of a small system can be measured with arbitrary precision,

are well approximated by machines which follow the rules of quantum field theory, for

V Md a few orders of magnitude. In realistic laboratory situations this number is of order

V Md ∼ 1023.

It is an experimental fact, and follows from the rules of quantum field theory, that

any such observer has a large mass, and will follow a time-like trajectory in D dimensional

space-time. The rules of holographic space-time are constructed in order to describe the

observations made by these time-like observers in a way that is compatible with the holo-

graphic principle. Associated with any segment of a future directed time-like trajectory,

going from a point P to a point Q in its future, there is a causal diamond, consisting of

the intersection of the interior of the backward light-cone of Q with that of the forward

like cone of P. The boundary of this diamond is a null surface, and the maximal area

space-like D − 2 submanifold on this surface is called the holographic screen of the causal

diamond. The covariant entropy bound bounds the entropy flowing out through the future

boundary of the diamond, by one quarter of the area of this screen, in Planck units. We

can reconstruct the time-like trajectory from a nested sequence of causal diamonds.

In quantum mechanics entropy always refers to a particular density matrix, and Fis-

chler and Banks argued that the only natural density matrix to choose in implementing

this principle for a generic space-time is the maximally uncertain density matrix, propor-

tional to 1. Alternatives, like a thermal density matrix, require a preferred definition of

the Hamiltonian, which is anathema in a generally covariant theory. With this choice, the

entropy referred to in the covariant bound is the logarithm of the dimension of the Hilbert

space associated with the diamond.

There is a natural way to construct a finite dimensional Hilbert space from classical

constructs associated with the diamond. Consider a small area, or pixel, on the holographic

screen. The screen lies on a null surface and, on the center of this pixel there is an orthogonal

null ray which penetrates the pixel. Actually there is an ambiguity here corresponding to

whether the null ray is ingoing or outgoing. We should use both, but imagine that dynamics

relates the incoming to outgoing rays, so we will describe only variables associated with

the outgoing ones. The null direction, and the orientation of the pixel, which is a bounded

region of a space-like D − 2 plane orthogonal to the null direction, are both encoded in a

pure spinor, a solution of the Cartan-Penrose equation:

ψ̄γµψγµψ = 0. (2.1)
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The independent real solutions to this equation are quantized according to

[Sa, Sb]+ = δab. (2.2)

Sa, or possibly complex linear combinations of them (depending on D) transform as spinors

in the tangent space of the holographic screen. More generally, we can and should enlarge

the algebra of pixel operators to include information about compactified spatial dimen-

sions [8].

The quantization of pixel operators defines an area for the pixel, via the Bekenstein-

Hawking relation. Extending this to all pixels of all holographic screens of all causal

diamonds of all observers, one would (over) determine the Lorentzian geometry of space-

time. A finite area holographic screen would have an operator algebra

[Sa(m), Sb(n)]+ = δabδmn, (2.3)

where we have exploited a Z2 gauge invariance of the CP equation and the commutation

relations to Klein transform the commutation relations between independent pixels into

anti-commutation relations. This Z2 is associated with space-time (−1)F and imposes the

spin-statistics connection on our formalism.

The operators Sa(n) should be thought of as a section of the spinor bundle of the

holographic screen. The fact that they are finite in number (since the screen has finite

area) means that we have pixelated the screen by replacing its function algebra by a finite

dimensional algebra.

It is extremely interesting that the representation space of the Sa(n) for fixed n is

precisely that of the spin degrees of freedom of a massless superparticle with fixed momenta.

So the degrees of freedom of a pixel on the holoscreen are precisely those of a massless

superparticle which penetrates that pixel.

Let us now specialize to the case of four dimensional de Sitter space. It is clear that

our set-up is observer dependent. In a symmetric space we are free to choose special

coordinates which exhibit the symmetry. In order to describe the holographic screen of the

cosmological horizon of an individual observer we want to implement the obvious SU(2)

symmetry of the screen. We also have a special operator corresponding to the generator of

motion H along the time-like Killing vector seen by this observer. H will be the focus of

our attention in the next section.

An SU(2) invariant way of pixelating the geometry of the two-sphere is to introduce the

fuzzy sphere algebra (the algebra of N×N matrices) as the definition of the topology of the

sphere.2 The spinor bundle over the fuzzy sphere is the module of rectangular N × N + 1

matrices, which contains all half integral spin representations of SU(2) up to N − 1
2 .

The operator algebra of the cosmological horizon is thus

[ψA
i , (ψ†)jB ]+ = δj

i δ
A
B . (2.4)

2Gelfand’s theorem shows us the functorial identity between the topology of a compact Hausdorff space

and its commutative C* algebra of complex valued functions. A key idea of non-commutative geometry is

to simply identify a space with every C* algebra.
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The dimension of this fermionic Hilbert space is 2N(N+1), which means that in the large

N limit we should identify

4N2ln 2 = π(RMP )2, (2.5)

where R is the dS radius. For dS space, we believe the density matrix to be e−2πRH , but

we will see below that the spectrum of H is such that this estimate of the relation between

R and N is unchanged for large N .

3. The static hamiltonian and the hamiltonian of Poincaré

The causal diamond of a time-like geodesic observer in dS space is covered by the static

coordinate patch

ds2 = −f(r)dτ2 +
dr2

f(r)
+ r2dΩ2, (3.1)

where

f(r) = 1 − r2

R2
.

In [9] one of the authors presented a qualitative ansatz for the Hamiltonian H, which

generates time evolution with respect to the static time τ . The claim is that the spectrum

of H is bounded by cTdS = c
2πR , where c is a constant of order one. The Hilbert space on

which H acts has dimension of order eπ(RMP )2 , where Newton’s constant, G = M−2
P . The

spectral density of H is thus e−π(RMP )2 .

Consider, for fixed c, a random Hamiltonian with these properties, chosen from any

smooth probability distribution, and a fixed initial state, |ψ > in the Hilbert space. Since

H is random, time averaged correlation functions in the state |ψ > will approach thermal

equilibrium, with an equilibrium temperature T = kψTdS. We conjecture that, for large

R, and generic |ψ > (chosen from a uniform probability distribution on the unit sphere in

Hilbert space), kψ will approach some average value k̄ψ . By adjusting c we can choose

k̄ψ = 1. Thus we claim that the spectral characteristics assumed for H can explain why

dS space is a thermal system with a unique temperature (see appendix for details).

This picture of the spectrum of H is supported by two other observations about dS

space. The most striking is the formula for Coleman-De Luccia (CDL) tunneling proba-

bilities between two different dS vacua. These satisfy a law of detailed balance consistent

with the picture of dS space as a quantum system with a finite number of states, but with

the free energy replaced by the entropy. This makes sense for a thermal density matrix if

the spectrum of the Hamiltonian is bounded by something close to the temperature.

The second piece of evidence is that every localized object in de Sitter space decays

to the vacuum. Classically the vacuum has zero energy and it makes sense to say that

the real quantum vacuum is an ensemble of states with energies below TdS (which vanishes

in the limit R → ∞). A black hole has a large classical mass, and it is inconsistent with

energy conservation to say that it decays to a state with small energy. We conclude that

the black hole mass cannot be close to an eigenvalue of H.
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The aim of [9] was to come up with a quantum model that accounts for all of the things

we think we know about dS space from the approximation called quantum field theory in

curved space-time. That approximation indeed finds a thermal density matrix at the

dS temperature, but with a Hamiltonian, which we will call P0, whose eigenvalues include

particle masses. QFTCST theorists think of P0 as the generator of static time translations,

but they also claim that P0 approaches the ordinary Hamiltonian of a Poincaré invariant

theory as R → ∞. This is inconsistent with our model for the spectrum of H.

P0 and H are thus different operators. P0 is in fact only an emergent quantity. It

describes localized excitations in a given horizon volume, which are unstable to decay (via

the true H dynamics of the system) into the dS vacuum. It is useful because the time scales

involved in P0 dynamics are short compared to the decay times of the excitations. We view

the eigenvalues of P0 to be the proper description of particle masses and the masses of

black holes.

To understand how the thermal ensemble with Hamiltonian H can look like the thermal

ensemble with Hamiltonian P0, we postulate a peculiar relation between the P0 eigenvalue

and the entropy deficit of the corresponding eigenspace. The calculations done in QFTCST

are an approximation in which decays of most localized systems do not occur. In this

approximation we do not really resolve the spectrum of H and it makes sense to take

H ≈ 0. In that case the probability in the thermal density matrix of H for having P0

eigenvalue E is just

Tr eEe−π(RMP )2 , (3.2)

where eE is the projector on the eigenspace with P0 = E. This will reproduce the proba-

bility computed from the thermal density matrix for P0 if

Tr eE =
eπ(RMP )2−E/TdS

Tr e−P0/TdS

. (3.3)

This relation between the Poincaré eigenvalue and the entropy deficit is valid to leading

order in M
R(MP )2 for Schwarzschild de Sitter black holes of mass M . We view this as another

piece of semi-classical evidence for the picture advanced here.

The commutator between H and P0 has the form

[H,P0] =
∑

(Ej − Ei)Hij, (3.4)

where Hij is the rectangular block of H with rows in the ith and columns in the jth

eigenspace of P0. The individual matrix elements in any of the Hij are bounded by c
2πR ,

but most of them are much smaller than this. In particular the QFTCST claim that the

effects of H dynamics look like thermal fluctuations in the thermal P0 ensemble, tell us

that matrix elements connecting huge Ei−Ej difference are exponentially suppressed. The

spectrum of P0 is bounded by the Nariai black hole mass, which is of order RM2
P .3

3Note that black holes are not eigenstates of P0. However, this is a bound on the energy of the decay

products. For black hole masses much smaller than the Nariai mass these decay products can be captured

by the static observer and might have a lifetime much longer than that of the black hole. The decay of

this bound but not gravitationally collapsed system back to the dS vacuum is probably not encoded in the

operator P0, but only in H . The captured decay products could be in eigenstates of P0
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In [9] one of the authors postulated the commutation relation between these two op-

erators to be a finite dimensional approximation to [H,P0] ∼ 1
RP0. This was motivated

by the way the asymptotic Killing vectors of Minkowski space act on the dS horizon. The

general considerations above show that the commutator is small but do not point to this

specific form.

4. Black holes from fermionic matrices

This section is meant to replace a somewhat confused discussion in [9]. The metric of the

Schwarzschild dS black hole has the same form as the static patch metric with f(r) →
(1 − 2M

rM2

P

− r2

R2 ). This has two horizons, which are at the positive roots of

r3 − rR2 +
2MR2

M2
P

= 0.

We write this as

R2 = R2
+ + R2

− + R+R−, (4.1)

2MR2 = R+R−(R+ + R−)M2
P . (4.2)

The entropy deficit of the black hole state, taking into account both cosmological and black

hole horizons, is

∆S = πR+R−M2
P . (4.3)

We match the entropy of our fermionic Hilbert space to that of dS space by

π(RMP )2 = 4N2ln 2. (4.4)

All such formulae are to be understood only in the large N limit. In order to find candidate

black hole states, we choose two integers related to R± by the same formula

π(R±MP )2 = 4N2
±ln 2. (4.5)

We do this by choosing an integer N− ≤ 1√
3
N, and defining N+ to be the closest

integer to the solution of

N2 = N2
+ + N2

− + N+N−, (4.6)

satisfying the constraint

N+ ≥ N−. (4.7)

Now choose N− rows and N+ columns of the fermionic matrix ψA
i and define the black

hole states with Schwarzschild radius N− to be those annihilated by ψA
i for the chosen

rows and columns. The reader is encouraged to think of the choice of a particular set

of N− rows and N+ columns as analogous to the choice of a particular static coordinate

system. Note for example that as N2
− gets large, and approaches its maximum value, N2

3 ,

one cannot independently choose to construct black hole states for arbitrary choices of

rows and columns. We will have more to say about the way that different horizon volumes
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are embedded in the index space of the fermionic matrices when we discuss particle states

below.

We can reproduce the black hole mass formula 4.2 by writing

P0 =

√

ln2

2π
MP (N2 − 2N )

√

N2 −N . (4.8)

Here, N is the total fermion number operator. This formula is “coordinate invariant”, in

the sense that it makes no reference to the particular choice of rows and columns. The

black hole states we have defined are all eigenstates of this operator, but not all with the

same eigenvalue. However, for large N , the average value of P0 in the ensemble of all black

hole states is indeed the classical black hole mass, and the fluctuations in this ensemble go

to zero like a power of N . We make the further rule that, when speaking of a particular

horizon volume we only look at states with a particular choice of N− rows and N+ columns.

A puzzling feature of the fermionic formulation is that one could consider similar states

with arbitrary choice of N+ independent of N−. This is perhaps related to black holes with

angular momentum, but we have not yet studied the angular momentum properties of

these states.

While the operator P0 realizes the relation between entropy and energy that we de-

scribed in the previous section, it is far from the exact Hamiltonian characterizing quantum

dS space. We view it as the asymptotic darkness [10] approximation to that Hamiltonian,

in which only black hole spectra are treated, and black holes are exactly stable. We will

have to modify the Hamiltonian in order to describe black hole decay, and the particle

states they decay into. It is to the second part of this task that we now turn.

5. Particles from fermionic matrices

Before embarking on this task, we should recall the extent to which physics in dS space can

be described in terms of particles. We begin our analysis, faute de mieux with quantum

field theory, though we will see below that there is a more elegant description available.

Our question is: How much of the entropy of dS space can be understood in terms of

particles? and it was answered in [11]. The entropy of quantum field theory is dominated

by high energy states, and the high energy behavior of a quantum field theory is conformally

invariant. The entropy of a cutoff conformal field theory in a volume of linear size R scales

like

Λ3
cR

3,

where Λc is the momentum cutoff. A typical state in this ensemble has energy of order

Λ4
cR

3 < M2
P R,

where the inequality is the requirement that the Schwarzschild radius of the state be less

than the dS horizon radius. This implies that the cutoff is very low

Λc <

√

MP

R
.
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One should understand that this is not the limit on the momentum of individual particles

in isolation, but only of particle belonging to the maximal entropy ensemble. Our actual

description of particles in dS space will have the tradeoff between the momenta of individual

particles, and the total allowed number of particles, built in to it. With this cutoff, the

total field theory entropy is of order (RMP )3/2. In [11] the authors suggested that this

counting allows us to understand the QFTCST picture of dS space as a system which (at

asymptotically late or early times) has an infinite number of independent horizon volumes,

each described by cutoff field theory. Our counting suggests that the number of independent

field theoretic subsystems is finite, of order (RMP )1/2, but becomes infinite in the small

c.c. limit where QFTCST is supposed to be a good approximation.

We now proceed to present our model in more detail. The holographic formulation

of quantum gravity in de Sitter space we want to put forward is expected, in the Λ → 0

limit, to recover 4d N = 1 Super-Poincaré physics. At the kinematical level, we expect to

recover something akin to Ashtekar’s formalism for asymptotically flat spacetime at null

infinity [14]. For 4d Minkowski space, null infinity is (u,Ω), where u is a null coordinate

and Ω parameterizes a two sphere. The conformal group of the sphere is SO(1, 3), which is

identified as the Lorentz transformations. However, as we will see below, the kinematical

theory of dS space does not lead to a field theoretic formalism on null infinity. Rather, in

close analogy with Matrix Theory, we obtain a direct description of multi-particle states

from a theory of matrices.

To set the stage, we discuss the formulation of SUSY algebra and SUSY multiplets of

N = 1 at null infinity. First, we will show that the 4 independent solutions to the Conformal

Killing spinor equation for S2 provide a realization of the minimal supersymmetry algebra

in 4d for massless multiplets. The conformal Killing spinor equation is

Dµq(α) = γie
i
µλ(α). (5.1)

In the usual angular coordinates on the two sphere, the zweibein has non-vanishing

components

e1
θ = 1, e2

φ = sinθ. (5.2)

In the representation where the two dimensional Euclidean Dirac matrices are σ1,2, the

spinor covariant derivatives are

Dθ = ∂θ, Dφ = ∂φ − i

2
σ3cosθ. (5.3)

Four linearly independent solutions of the CKS equation are

q1 = i
√

1 − cosθeiφ/2

(

0

1

)

, (5.4)

q2 = −i
√

1 + cosθe−iφ/2

(

0

1

)

, (5.5)

q3 =
√

1 + cosθeiφ/2

(

1

0

)

, (5.6)

q4 =
√

1 − cosθe−iφ/2

(

1

0

)

. (5.7)
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These satisfy

(q†)αqβ = (γ0γµ)αβP̂µ, (5.8)

with the Weyl representation of the SO(1, 3) Dirac matrices. Here

P̂µ = (1, sin θcos φ, sin θsin φ, cos θ). (5.9)

Below we will argue that K×K+1 fermionic matrices ψA
i , converge as K goes to infinity to

operator valued linear functionals on the space of measurable sections of the spinor bundle

of the two sphere. For two sections fa, ga, the commutation relations are

[S[f ], S[g]]+ = pfaga,

where p is a positive real number we will explain below. It follows that

[S[qα], S[qβ ]]+ = (γ0γµ)αβPµ.

We now recall that any CPT-invariant massless multiplet of N = 1 d = 4 SUSY

contains states with 4 helicities: m,m − 1/2,−m + 1/2,−m. At null infinity, these states

are sections over S2 line bundles with the corresponding charges. The charge of a line

bundle is one half the power of the positive chirality spinor bundle which realizes it. This

is the description of asymptotically flat N = 1 d = 4 kinematic framework we aim to

recover in the Λ → 0 limit of deSitter space. Coming back to deSitter, at finite N, the S2

sphere at null infinity is substituted by a fuzzy sphere, and the S2 line bundle of charge m

is substituted by a module, a vector space of N × (N + 2m) matrices [15]. Our main claim

is this section is that we can take blocks of Grassmann variables, such that, in the limit

their size goes to infinity, the 4 sections of a supermultiplet are recovered.4

Our proposal for the chiral multiplet, m = 1/2, uses the coherent state representation

of the operator algebra of the variables ψA
i . The Hilbert space consists of functions of a

Grassmann variable zA
i , i = 1, . . . , p, A = 1, . . . , p+1 as a p×(p+1) matrix, with the usual

Berezin inner product. As in Matrix Theory, we mean arbitrary functions of the matrix

elements.

Now introduce

na ≡ zT Ja
p z (5.10)

and

Na ≡ zJa
p+1z

T , (5.11)

where Ja
2l+1 are the 2l + 1 dimensional representation of the angular momentum matrices.

The space of all holomorphic Grassmann functions of z decomposes into four subspaces,

4Our discussion here bears some relation to that of [13]. We suspect that the relation between their

framework and ours is similar to that between Hilbert spaces of gauge theories before and after fixing

gauge constraints: in their Hilbert space, with dimension growing like e
R

3

, not all degrees of freedom are

simultaneously physical. After one chooses a holographic screen (”fixes the gauge”), the reduced Hilbert

space has dimension e
R

2

, as ours has.
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which are of the form

zf1(n
a) (5.12)

f2(n
a),

f3(N
a),

zT f4(N
a).

In these formula, the functions fi are matrix polynomials. For example, the general

form of f2 is
∑

ca1...ak
na1 . . . nak , where the products are p + 1 × p + 1 matrix products.

Our claim is that every function of the matrix elements takes one of these four forms. That

is, the matrix elements of these four kinds of matrix fill out the space of all functions of

the matrix elements of zA
i in a one to one fashion.

Note that the differences between the numbers of rows and columns in these four

subspaces are 1,0,0,-1, as appropriate for the modules of the four sections of the m = 1/2

supermultiplet. The fi are all power series in their respective matrix variables. The power

series all truncate, because z is a Grassmann variable.

Our conjecture is that, one can take the p → ∞ limit, in such a way that these four

subspaces of the Hilbert space converge to the space of L2 sections of four line bundles

over the two sphere. This conjecture is motivated by the way in which the fuzzy sphere

converges to the sphere, but has the following additional features.

• na and Na are bilinears in Grassmann variables. This should become irrelevant as

p → ∞ because these combinations involve infinite sums of Grassmann bilinears and

so all of the vanishing relations in the Grassmann algebra only come in very high

order products. The L2 sections involve sums of finite monomials in these variables

(generalized spherical harmonics) with coefficients converging to zero rapidly with

the order of the monomial.

• Conventionally one takes a limit of the fuzzy sphere which produces a spherical geom-

etry with finite radius. Here we want to make the radius infinite and obtain objects

which depend only on the conformal equivalence class of the geometry. The conformal

group of the sphere is SO(1, 3), which is identified with the Lorentz transformations.

• As a consequence, wave functions will depend on a variable p ∈ R+, a continuous

limit of the discrete p. The continuous p will rescale under conformal transformations

of the sphere [14, 8].

If this conjecture is correct, then our limiting single particle Hilbert space will be that

of the massless chiral supermultiplet. We will realize different particles in terms of disjoint

K × K + 1 blocks of the N × N + 1 matrix ψA
i . The ratios of matrix sizes for different

particles take all real positive values in the limit, so we can parametrize the size of a

given matrix by a positive real number p.5 The real linear combinations of the operators

5We are actually describing a limit in which the matrices become elements of the hyperfinite II∞ factor,

as in [8].
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ψA
i and their adjoints converge to linear functionals (operator valued measures) Sa(Ω, p)

on the space of measurable sections of the real spinor bundle over the two sphere. The

commutation relations are

[S[f ], S[g]]+ = pfaga,

where fa(Ω) and ga(Ω) are any two sections. If we choose qα
a to be the four real solutions

of the CKS equation (linear combinations of the solutions described above), then Qα =

S[qα] satisfy the SUSY anti-commutation relations for a single massless superparticle with

momentum p(1,Ω) .

Our explicit construction leads directly to the chiral multiplet. Bundles on the two

sphere of charge k (2k is the power of the positive chirality spinor bundle) are obtained

from fuzzy modules of N × N + 2k matrices. We do not see how to obtain these while

simultaneously enforcing the requirement that the operators ψ converge to something that

transforms in the spinor bundle.

When discussing representations of the massless SUSY algebra in four dimensions, one

is similarly led most naturally to the chiral multiplet. One simply appends a phase to the

transformation law of the states in order to describe higher spin massless multiplets. It is

possible that one can construct a similar argument for the present system, but we do not

see how to obtain this from a natural finite N construction.

One way to do it is to insist that the pixel degrees of freedom actually correspond to

full 32 component spinors, and satisfy a version of the massless SUSY anticommutation

relations of 11D SUGRA in the presence of central charges. Then one representation will

always contain the graviton. Since we start from a holographic description of the theory, it

is reasonable to assume that it will only be sensible as a dynamical theory, if it contains a

graviton. If there is no quick and dirty way, like that alluded to in the preceding paragraph,

to model higher helicities then we would find that our formalism only makes sense if we

model four dimensional space-time as a compactification of String/M Theory. Of course,

a lot more work needs to be done, before we could make such a grandiose claim.

Having dealt with single particle states, we turn to multiparticle states. The basic idea

is to consider block decompositions of the full N × (N + 1) matrix, where by the previous

argument, each individual block corresponds to a single particle. We take the block sizes

1 ¿ pi ¿ N and take N and all pi to infinity, with pi/pj fixed.

In particular, let’s consider the following block decomposition

ψ =















1 2 . . . K

K 1 . . . K − 1

. . . . . . . . . . . .

. . . . . . . . . . . .

2 3 . . . 1















, (5.13)

where K ∼
√

N . We associate the degrees of freedom labeled by a given integer 1 ≤ p ≤ K

with a single independent horizon volume. Note that, if we follow the hint from our black

hole discussion, and treat exchanges of indices on ψ as a gauge equivalence, then the

different horizon volumes are equivalent to each other. Furthermore, the different blocks in
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a given horizon volume are indistinguishable, in the sense that permutations of their order

is just a relabeling. As in Matrix Theory [12], we will treat this as the gauge symmetry of

particle statistics.

We are free to vary the individual block sizes in a given horizon volume, but if we

want to maximize the entropy, with the proviso that there be many individual particles,

we should take the blocks to be approximately square, with K ∼
√

N rows. If we do this,

all horizon volumes are indeed treated equally. If we try to increase an individual block size

to be À K, then we simultaneously squeeze out degrees of freedom in other horizons, and

constrain the allowed states of particles in our own horizon volume. Thus, the idea that

localized entropy in a given horizon volume is “borrowed” from the horizon, an idea which

originates in the black hole entropy formula, becomes quite explicit in this construction.

When we make such a large block, a description of the system in terms of black holes

becomes more appropriate. We begin to see the vague outlines of a unified description of

black hole and particle states, and their interactions.6

The natural unit for this discrete momentum, is 1
R , the minimal momentum that fits

inside a horizon volume. The maximal momentum for particles in our maximal entropy

configuration, with block size K, is of order
√

N
R ∼

√

MP /R in agreement with our field

theory estimate. However, unlike field theory, our formalism allows us to take individual

particle momenta much larger than this, at the expense of making the momenta of other

particles smaller, or reducing the total number of particles.

Using only the degrees of freedom in a single horizon (corresponding to a single integer

label in our block decomposition), we can make a maximal block size of order N3/4, which

would appear to give a maximal momentum of order (RMP )−1/4MP (in the real world

this would be a few TeV). However, this is not the only way to make high momentum

particles. Our formalism describes particles by the way in which they register on the

holographic screen at infinity. As we will see in a moment, particles of higher momentum,

defined by full blocks of size J À K, have higher angular resolution on the screen. The

full set of degrees of freedom in a block of size J describes superparticles whose angular

wave function can be roughly any one of the first J spherical harmonics. Thus, these

operators can describe of order J particles, with the same absolute value of the momentum
J
R (1,Ω). If we only need to describe a few particles with high momentum, we can use

smaller blocks, but with the wave functions “locked together”. Thus, if we only use K

blocks of size K ∼
√

N but insist on states with exactly the same angular wave function in

each block, we are describing the amplitude for a pixel in the detector on the holoscreen to

absorb momentum MP . From the point of view of scattering theory this is interpreted as

a single particle with momentum MP . Perhaps, in analogy with Matrix Theory, it should

be viewed as a bound state of the particles associated with individual blocks. Note that,

in contrast to Matrix theory, there is no way to talk about particles at finite separation in

the kinematics we are discussing here. So the concept of a bound state does not have an

obvious meaning in this context. In a similar manner, we could try to describe particles

with momentum up to (RMP )1/2MP as bound states of N3/2 blocks of size ∼ 1. These

6We have to admit that it is rather too vague for our taste at the moment.

– 13 –



J
H
E
P
1
2
(
2
0
0
6
)
0
0
4

would be forced into a an almost unique angular wave function, consisting of only the first

few spherical harmonics. The description of particles in our formalism is thus flexible, and

the number of particles and their allowed four momentum wave functions are constrained

in a complicated and mutual way.

We end this section with a remark about the emergent SU(2) group of three dimensional

rotations in the limiting asymptotically flat theory, which we obtain as (RMP ) → ∞. It

is not the same as the SU(2) group of the static observer, under which the full fermionic

matrix transforms as the [N ⊗ N + 1]. Our entire formalism was built on the hypothesis

that the Poincaré Hamiltonian P0 was a very different operator from the static Hamiltonian

H. Now we see that the same is true for the rotation group.

6. Finite N corrections

If our mathematical conjecture about the limiting space of Grassman wave functions is

correct, then we have isolated the kinematic degrees of freedom of particle physics from a

formulation of the quantum theory of dS space, which has a finite number of states. We

could then hope to get some insight about the finite c.c. corrections to particle physics

observables. In particular, it is plausible that the super-Poincaré commutation relation

[Pµ, Qα] = 0, (6.1)

(with Pµ defined, as above, by the SUSY anticommutation relation) is not valid at finite

N .

In order to describe the spectrum of particles at a given mass scale m, we should

work with particles described as fermionic matrices of size (mR). It is clear from the

above discussion that unless (mR) À 1, we cannot hope to obtain a description which

approximates particles moving in flat space. This remark shows that our formalism cannot

describe gravitinos obeying the classical SUGRA relation m3/2 ∼ 1
R , which arises from

requiring that the c.c. not look fine tuned in the low energy effective field theory sense. This

argument alone cannot fix the dependence of m3/2 on R, but the most symmetric treatment

of particles in this system uses blocks of size N1/2. Thus one might expect corrections

to SUSY degeneracies of order N−1/2, which suggests m3/2 ∼ (R/MP )−1/2 ∼ Λ1/4, as

conjectured in [6].

7. Conclusions

We have presented a kinematic framework for the quantum theory of de Sitter space, and

identified configurations of the fundamental variables which could represent both black

hole and particle states. Much remains to be done in order to develop this into a full blown

theory. We list the most salient points:

• We must prove the conjecture that our finite dimensional particle Hilbert space con-

verges to the usual Fock space of superparticles.
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• We must understand how to describe compactified internal dimensions and the spec-

trum of non-gravitational supermultiplets. Indeed, in the limit N → ∞ we expect

our model to have an S-matrix which is super-Poincaré invariant, and is likely to be

closely related to well understood string and M theory constructions. We might hope,

e.g. that the limiting model will have an approximate description as 11D SUGRA

compactified on a manifold of G2 holonomy with values of the moduli frozen at an

R symmetric point. We need a kinematic description of such a compactification in

terms of fermionic matrices.

• Most importantly, we need to formulate dynamical equations which determine the

scattering matrix and the object which approximates it for finite N .

The first two of these desiderata seem within reach, while the third remains somewhat

mysterious. One of the authors has suggested possible avenues of attack on the dynamical

problem in [8].

A. Random states of large random bounded Hamiltonians have a unique

temperature

In this brief appendix, we indicate how to prove the conjectures we made about random

Hamiltonians. These results were explained to us by Mark Srednicki. We want to study

random Hamiltonians whose spectrum is bounded between [0, Eb], where we will eventually

take Eb to be of order the dS temperature. Most studies refer to Hamiltonians chosen from

a Gaussian random ensemble. We will assume that similar results are valid for our case.

Given such a Hamiltonian, and in the limit of a large Hilbert space, one can show that

the time averaged expectation values of a class of observables converge to the expectation

values in a thermal ensemble [16]. The necessary constraint on observables has to do with

their matrix elements in the basis where the Hamiltonian matrix elements are Gaussian

random variables.

The temperature of the thermal ensemble is related to the center of the small energy

band that is allowed in the eigenbasis expansion of the initial state. It is thus determined

by the expectation value of the energy in the initial state.

This expectation value is

∑

|ai|2Ei.

We now want to average this over all possible initial states. The measure is the unitary

invariant measure on the unit sphere in our finite dimensional Hilbert space,

δ(1 −
∑

|ai|2).

For large N this can be replaced by the Gaussian measure e−
1
2

P

|ai|
2

Z . We can compute

expectation values and fluctuations using Wick’s theorem. The expectation value is the

average eigenvalue of the Hamiltonian, and the fluctuations in this quantity as we run over
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the ensemble of states is 1
N . Since the energy scale is set by Eb for any smooth measure

with support on the interval, this will also be the scale of the average temperature. We

choose Eb so that the temperature is precisely the dS temperature. Recall that in the dS

case, N is an enormously large number. For our own universe it would be e10120

.

Thus, assuming that random Hamiltonians with a fixed upper and lower bound ther-

malize generic states, we have proven the claims in the text.
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